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Exact analytic expressions for electromagnetic propagation and optical nonlinear generation
in finite one-dimensional periodic multilayers
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The translation matrix formalism has been used to find an exact analytic solution for linear light propagation
in a finite one-dimensional periodic stratified structure. This modal approach allows us to derive a closed
formula for the electric field in every point of the structure, by simply imposing a convenient form for the
boundary conditions. We show how to apply this result to second-harmonic generation in the undepleted pump
regime.
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[. INTRODUCTION The same approach can be easily extended to the nonlin-
ear regime whenever the linear propagation of the input

It has been a very long time since multilayer periodic ; L . :
structures have been proposed as distributed cavities fflrelds is not significantly affected by the nonlinear interac-

many different purposel,Z]. They enable the engineering ions. As an example,_ we will study the case of SHG in the
of field enhancement, group velocities, coherence Iengthsu,memme‘j pump regime.
and so on. In the literature their treatment is usually per-
formed numerically, for example with the transfer-matrix ap-
proach[3-5 or by a Runge-Kutta numerical integration of
the Maxwell equationg6], and semianalytically through ] ] o
convenient approximations, such as the coupled-mode theory Let us consider a structure, the period of which is com-
[7-9, the envelope-function approagh0—13, the Fourier pqsed of M d!ﬁerent layers with refract|v_e mde_mj and
expansion of Bloch waveld4—18, or the recently proposed thicknessd; (j=1,... ,M). The stack period will beA
quasinormal mode expansi¢h7]. =2,d; (see Fig. 1 For simplicity, we will focus on the

In this paper, we will derive exact analytical expressionsPurely 1D problem of propagation normal to the layany-
both for the transmission and for the local field distributionWay it is straightforward to extend our analysis to oblique
of finite periodic structures using the modal approach as proincidence[14]).
posed by Russedt al. [14] This approach greaﬂy S|mp||f|es It is a well-established result that, in a uniform medium,
the heavy numerical calculation needed in other scheme#e general solution for the scalar wave equation can be writ-
Physically a purely one-dimensiondD) system represents, ten as a superposition of plane waves. Following Russell’s
in princip|e, a scalar pr0b|em with two degrees of freedom,tran3|ati0n matrix formalism14], we can choose a partiCUlar
name|y going from left to nght and going from r|ght to left. form for this linear combination and write the field in the
We will show how, working always in the basis of the eigen-layer of themth period as a superposition of a sine and a
modes, in each self-similar section, two complex number§0sine centered in the middle of the layer,
completely determine an exact analytical solution for the
propagation. Self-similarity means translation invariance,
i.e., that the structure can be seen as a succession of replicasEj,m(2) = &;,m €04 8j(z= 2z w)] + bj msin Bj(z— 2z /6,
of the same unit cell. A uniform medium clearly features a (1)
continuous translational invarian¢ee., any point is equiva-
lent to any other pointand its eigenmodes are, of course, the
forward- and backward-propagating plane waves. On theherea; ,,andb; ,, are complex constantg; = 2mn;/\ is the
other hand, a periodic medium features a discrete translatiosropagation constant of a plane wave in the considered layer,
invariance(i.e., points a period apart are equivalent to eachaj =pBjA, and
othep and its eigenmodes are well known to be the progres-
sive and regressive Bloch waves.

II. BLOCH MODES

By definition, these eigenmodes propagate unperturbed in rz= (1) (2) 2 } ; _l,
their proper medium, reducing the problem to a simple L = !
analysis of the boundary conditions, coming from the world [E. ol . o l 1
of plane waves, passing through the world of Bloch waves to Ty, ' /'\ Z|1 - : =

couple back to the realm of plane waves.

FIG. 1. A periodic multilayer composed of three layers. On top
is explained the meaning of the indexs indicating the period,
*Email address: cherchi@cantab.net andj, indicating the layer.
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i-1 =
+ + ak
Zm=MmA +3(d,—dp) + X d QEEMki(DrE(bi)-
i=1 k
is the coordinate of the center of the same layer. This par They correspond to the eigenvalues
ticular form has been carefully chosen for algebraic conves + 2 = +ig) = +
nience. The basigog gj(z— Z m],sin Bj(z-z )]/ 6;} is spe- [D+A V(D = A)"+ 4BC] = exp(xi6) = expxi A),
cific for each single Iayer is always real even for |mag|narywherelg arccosE (D+A)]/A is the Bloch propagation con-

Bj, well behaved ag’ changes sign, and retains two degreesstant. So, up to an overall phase, the eigenstates iftthe
of freedom even fo;=0 (actually these features are really |ayer of themth period can be written as

important only in the case of oblique incidencalso propa-

gation within a stop band is specified by real valuesgf O}, = exp*imo)®; = exp(ximo) @},
andb; . In general, these constants entirely specify the field

in any chosen layer. or, in terms of the field eigenmodes,

Introducing the vectorial representation of the field states o _ N
in the jth layer of themth period, E{m(2) = expimo)iaj cos[B;(z -2 m)]
N +b7 sin[B(z- w16}
D= (bf"“), = exp£imo)E: o(2),
J,m

which reads that, for a Bloch mode, corresponding points of

the translation matrices different periods feature the same field, up to a factor due to

B the Bloch propagation constathat is, a phase factor in the
= Ad Bu pass band and an amplitude factor in the band.gap
M .
Cq Dy Let us now introduce the square waves
so that®y ,=M ®; ,, propagate the field from the layeto d, i-1
the adjacent layerk=modi,M)+1 [where “modx,y)” S(2) =\ dj—mod z +E -> di, A
means the remainder on division wfy y]. Their elements i=1
are where we have defined
A =& = (6/6)SS Byi=Cisd 6+ s/ 6, 1, x=0
/z(X) .
0, x<0

Dyi = CiCk — (6i/ 6)SSk Cii = — (6iCisc + 6,GS), _ S _ _
They are defined so th&(2) is 1 in the regions with refrac-
having definedc;=cog;d;/2) and s;=sin(g;d;/2). These tive indexn; and zero elsewhere.

matrices are entirely real whenevgrare real, which is true Let us define also the “period number” functigint” is
in the case of normal incidence. for integer part
The matrix
_[z+dy/2
A B g(z) =int (T)
M MlM M32M21 (C D)v

and the relative positions

so that®; ., =M ®, ,,, links the field of corresponding lay- -1

ers in adjacent periods. () = 7— 1= 1y _ i
By definition, the Bloch modes are the eigenmodes of aﬁj(z) 2-[2A+2,0]=2 [q(z)A+ 2(dj—dy) + g{d'}

periodic structure. Since the matrM propagates the field

from the first layer of a given period to the first layer of the With these elements the Bloch modes can be rewritten in

next period, the vectorial representation of the Bloch modelosed form as

in the first layer of the first period will be givefup to an

overall phasgby the eigenstates dfl, E*(2) ‘EM: Sﬁ(z)E‘-”(z) 3)
=2 (2,
Y R\D-Az\(D-A?+4BC/ \bj/’ where

Ei(2) = exdzifq(2)[{a; cod B 6,(2)]+ b: sin[B;6,(2)1/6;}.
where R= \/4BZ+[D—Ai J(D-A)2+4BCJ?/ ¢ is a conve- i@ HEi6a(2 ia cod B (2] + by sinlB; 5(2) 0}
nient normalization. We can then propagate the field from thét can also be convenient to represent the generic field Bqg.

layeri to the adjacent layedt=mod(i,M)+1 to find the rep- as a superposition of local plane wayes., the eigenmodes
resentation of the Bloch mode in the other layers as of each single layerthrough the vectors
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T T 1 T M
1 1 1 1
: ! | E@ =X S{A@)exd~ 18,52+ ADexii g5},
p@) l : l ! : =1
0 A NA 2 where we have defined thedependent expansion coeffi-
cients
FIG. 2. Incidence on aN-period structure. The light impinging
from the left is partially transmitted and partially reflected with Al(2) = IX.a exdiga(2)1+ X ao°
amplitude and phase given by the complex numbeasd p. J( )=t 9 _p: (2] _g'
Xexp-i6q(2)[yexd-iB;6(2)],
_{9m) _ 1/1 |/0] m) . ) _
Wim= <hj,m) = 5(1 ~it6, )\ =T®n 4 A2(2) = {X,h" exdi 6a(z)] + X_h;
having rewritten xexi-i6a(2)]} exdi;5(2)]. ()

- ; : This allows us easily to impose the boundary conditions in
. =0 —i16:5 + h. -5
Bm(2) = 8im &XH=18, 521+ hymexdli55(2)]. - (5) terms of the incoming and outgoing plane waves,
This allows us to cast Eq.3) in the standard Bloch form

E*(2) = u,(2)exp(*iB2) by defining Al(0)=1,
M
w2 => §uQ, A0 =1 explig,) = p(N),
i=1
where ALNA) =texplig) = 7(N),

U/ (2) = exp(¥iBz o{gi exd—i(B; % B)§(2)]
+hit exdi(8, £ B8 21,

giving
with the obvious definition offandh* throughW; =T, ®;.
From the definitions 0§(z) and (2, it is clear thau.(2) X, = Q'}'l exp(—iN6&h,
are A-periodic functions.

AB(NA) =0,

X_=-0N exp(iNo)h],
I1l. BOUNDARY CONDITIONS
— ON (mFHm —
A. Perfectly periodic case 7(N) = Q74(g;hy = gihy),

Consider now a finite structure &f periods(Fig. 2) em- N L o
bedded, both on the left and on the right, in the medium 1, p(N) = = 2y, sin(N&)hyhy, (8)
and excited on the left by a plane wave with wave vectorh . )

4 ) aving defined
normal to the layers, unity amplitude, and null phase at
z=0.

Assuming that all materials are lossless, the layered struc-
ture will act as a mirror With a unita_lry scattering matrix, |n Eq. (8), «(N) and p(N) are analytical expressions for the
reflecting a plane wave with an amplitudeand a phas@;  transmission and reflection of ahperiod multilayer(analo-
and transmitting a plane wave with amplitudend phase:,  gous to those found in Ref2]), while X, and X_, once
all to be determined. substituted in Eq(6), give analytical expressions for the field

In the case of nondegeneracy, the eigenmodes of the pgyside the multilayer. Notice that, at the band edg@d,
riodic structure represent a complete basis in every layer ofjyerges and, while{N) and p(N) are well-behaved func-
every period[notice that at the band-edge points, whébe tions, X, and X_ diverge.

-A)*+4BC=0, the eigenmodes are degenerate and the Tq our knowledge, this is the first time that an exact ana-
eigenstates can be a complete basis if and onB=C=0 |ytical expression for the field in a finite multilayer structure
andD=A]. So we can write the field in every point of the has been calculated explicitly. We believe this is due to two
periodic section as a linear combination, main reasons. First, in the literature it is still possible to find
_ + - papers claiming that Bloch analysis can be applied to infinite
B@)=XE'@+XEQ, ©® periodic structures only, even though exhaustive argumenta-
where X, are the expansion coefficients, i.e., two complextion against this prejudice has been made for a long time
constants to be determined. [18,19 (this is analogous to claiming that plane waves can

Since the Bloch waves can always be projected on thée used for infinite uniform media onlySecond, usually the
complete basis of the eigenmodes of the single ldf®;.  Bloch expansion analysis of finite structures is made using a
(5], we can highlight the forward- and backward- global plane-wave expansiofil4,15, that is, a Fourier ex-
propagating plane-wave terms rewriting pansion on harmonics of the reciprocal-lattice wave number,

Q= [hjgg exp—iNg) - h/g expliNO)T™. (9)
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instead of docal plane-wave expansion on the propagationsive traveling waves, i.e., the eigenmodes of the medium that
constant of each layer. But, in the same way that multiplyinghey surround. These two points of view apply also to peri-
N transfer matrices means forcing the local plane-wavendic structures: the first one by finding the proper quasinor-
analysis at the global levéle., the transfer matrix is blind to mal modeg17], the second one by replacing the plane waves
periodicity), using a global infinitgor, in practice, truncated with the Bloch waves, which is what we have done.
plane-wave expansion means forcing the global periodicity As a numerical example, we show in Fig. 3 the transmis-
at the local leveli.e., the basis elements of a Fourier expan-sion spectrum of a 10-period bilayer structure and its com-
sion are blind to the period microstructiréVe prefer in-  parison with a standard transfer-matrix approach. The com-
stead to use the Bloch modes at the global level and tplete agreement is not a surprise, being they are both exact
project them to local plane wavdse., local eigenmodgés methods, but we would like to point out that our analytic
whenever a local calculation is needed, without any truncaapproach is much more efficient because the calculation time
tion of any basis. does not depend on the number of periods. We also show the
For a comparison with the quasinormal modes approachsquare modulus of the Bloch mode coefficied{s notice the
we can find an analogy with the standard treatment of Fabryasymptotes corresponding to the singularities at the band
Perot cavities. A Fabry-Pérot cavity can be seen both as aedges. In Fig. 4 are plotted the field amplitudes of both the
open cavity, i.e., a cavity with its proper “standing waves”Bloch wave decompositiofiEq. (6)] and the local plane-
(the quasinormal modegQ]), or, on the other hand, as a wave decompositiofEq.(7)] calculated at the first transmis-
cascading of two mirrors that reflect progressive and regression peak on the right-hand side of the second baodre-
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Field Intensity

V\

FIG. 4. (a) Total electric-field
intensity, (b) field amplitudes of
the Bloch wave decomposition,
and(c) field amplitudes of the lo-
cal plane-wave decomposition, all
calculated at the first transmission
peak on the right-hand side of the
second band as in Fig. 3.

(b) z (um)

Local Plane Waves: Field Amplitude Distribution

sponding toA=1.5715um). Notice the discrete invariance A]f(zj 0=1,
of the Bloch mode amplitudes from period to period and the '
continuous invariance of the plane-wave amplitude within
each single layer.

Two movies showing a comparison between the plane-
wave and the Bloch wave expansions are available on the

A(z,0 = pR(N-xy),

Web [21]. .
AL(NA) = (N -x)),
B. Fractional period case: Left to right I 1 I T
1 1 1 1 I I R
. . 1 1 1 1 3 1 T (N-xj)
It is also useful to calculate the field when the structure oR(Nxy P 1| |/
. . . . - . . B 2 | 1 1 1 1 1
begins with the medium and finishes with the medium 1 — o [ ]
(Fig. 5). Supposing to keep the same frame as in the previous 0 Zio A NA Z

case and defining the period fractiog= A/z ,, if the in-
coming plane wave comes from the left-hand side, the FIG. 5. Left to right incidence on atN-x;)-period structure.
boundary conditions become The first period is truncated and begins with ftie layer.
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FIG. 6. Right to left incidence on afN-x;)-period structure.
The last period is truncated and finishes with jtielayer.

AYNA) =0,
to give

X, = QY exp-iNg)h,
X_ =~ 0f expiNg)hy,
AN =) = Ofi(grh; - gihy),

pR(N - x) = QY[hih' exp(—iN6) - hih exp(iN6)],
(10
where )} is defined in Eq(9).

C. Fractional period case: Right to left

PHYSICAL REVIEW E69, 066602(2004
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FIG. 7. Equivalent cavity for the light generated in a single
layer. The generation can be thought to be concentrated in the point
sourcesG and to build up the field§ inside and outside a cavity.
The concentrated mirrors are equivalent to the multilayers on the
left and on the right of the given layer.

A. Nonlinear output

Suppose that to each layer of refractive indexthere
corresponds a nonlinear second-order susceptib‘ij The
field at frequencyw and propagation constag expressed
by Eq.(7) will generate in each layer a time-dependent ma-
terial polarization[22]

Py(z.t) = X2[E@exgliot) + c.c?.

When the structure begins with the medium 1 and finishegve will keep only the two spatial terms which can signifi-
with the mediumj and it is excited from the right-hand side cantly contribute to SHG, i.e.,

(Fig. 6), the boundary conditions become
Ajf(zj,N) = p-(N-x)),
Az ) =1,
ALNA) =0,

AYNA) = (N -x)),
to give

X.==-0}07, (11

X = QlegL
(N =) = Qfy(g3hy - grhy),
p-(N=x)) = Qg0 exp(—iN6) - gigf expl(iN6)],
where ()} is defined in Eq(9). B
Notice the role exchange betwegﬁ andh;” with respect

to Eq. (10).

IV. SECOND-HARMONIC GENERATION

Having an analytical expression for the field allows us

Pi(2) = X{?[A{(2)]? exd- 21 3,5/(2)],

PP(2) = XP[AY(@)]? exdl 2i 8;5,(2)].

So, at the right edge of the layer, the forward-propagating
field at frequency & and propagation constaky, generated
starting from the left edge, will b@in each layer the period
number gq(z=m and the field complex “amplitudes”

A(z)=A} are constant

G| m = X2 (A] )%exp (= ikdi/2)sind (8; - ki/2)dj]d;,

(12
while at the left edge of the layer, the backward-propagating
second-harmonic field generated starting from the right edge
will be

G X2 (AP )? expl- ikjdi/2)sind (B; - ki/2)d;1d;.

(13
So, from the point of view of the @& radiation, each layer
will be seen(see Fig. 7 as a cavity with two source terms at
its edges, delimited by two mirrors with reflectivity,; and

transmissivity 7. For the layerj, from Eq. (10) with all
quantities calculated at frequencw 2 will be

0= explikdi/2) (N - m=x),

easily to solve nonlinear problems in a finite periodic struc-

ture without using heavy numerical approaches. As an ex-
ample, we will show how to calculate analytically the second
harmonic generated by ad-period multilayer in the unde-
pleted pump regime.

i = explik;d/2)pf(N=m~-x)),
7 = explik;di/2) 7 (m+ X)),

066602-6



EXACT ANALYTIC EXPRESSIONS FOR.. PHYSICAL REVIEW E 69, 066602(2004)

P = explikid/2)pH(m+x;), £}4(2) = Xt exeli a(2)] + Xy exil- i6q(2)],
where the phase factors account for propagation from the Rb Rt . R ]
edges to the center of the layer. So it is possible to easily  &jm(@ = X{mhy exfli6a(2)]+ X hy exd-i6a(2)],
calculate the second-harmonic contributions coming from
the jth layer of themth period by simply imposing the 5%(2) EXjL,'rEQI exp[ieq(z)]+xk*'g1 exd-i6q(2)],
boundary conditions for any given cavity,

Fl m(0) = pFnF P (0), E0(2) = Xmht exdi0a(2)] + Xy exd - i6a(2)],

f f f to give
F (d)=F (0)exp-ikd)+G: .,

jm\d) = Fjm g J.m XjR,};:Q(l)lhI qu_iNG)Fﬁm’
F° (0)=FP (d)exp(-ikd)+GP,
jm j,m\Yj 7 Em Xt == Q3h] expliNOFT,
FP () = o F(d)
jm\H Jomt g, miE) 1
Xim=— Q%0

jme
FRo=RFl (d),

= i Xt = 0001,
S () where 09, is defined in Eq(9), always with all quantities
calculated at frequency«2

Since in theith layer of thenth period all therFf’nﬁ will

contribute so than<n orR(M=n AND j <i) as well as all the
X}',ﬁ so thatm>n OR (m=n AND j=i), the overall Bloch

where (see Fig. 7 FJ-f;r'; are the forward- and backward-
propagating fields inside the cavity, and, solving for the
fields F}%; out of the structure, we find

- P m EXP(= ikjdj)GJb,m+ ij,m mode coefficients will depend on the position and will be
j,m = i.m - ) ; + + + +
1= p P €XP(- 2ik;dl) Xin= > Z xR+ E xR+ 2 E Xim+ E X
m<n j j=<i m>n j =i
. pfm exp— ikjdj)ij'm+ GJ-b’m so that we can write the total second-harmonic field in the
Fim= 1] layer as

,m L R o )
1 p]-'mp]-’meX[Z( 2ik;d;)

Ein(2) = X"EN(2) + XE(2),
Finally, the total second-harmonic field outside the (@ =XE@ @

multilayer will be simply given by the sum which is the desired result.
RL — RL
P = lzm l:J\m’ V. CONCLUSIONS

which is the desired resulwhere, for simplicity, we have In the contest of the translation matrix formalism, we

assumed also the thickness of the first and the last layer to H¥2v€ Shown how to obtain analytic expression for the field in
dy). finite 1D periodic structures. We apply this result to the case

of SHG, which can be treated analytically in the undepleted
B. Field distribution inside the structure pump regime. The same analysis can be extended to much
_ ) more complicated structurés.g., featuring defectdy sim-
We can also derive an expression for the second,y inposing the boundary conditions that apply or by asso-

harmonic-field distributiop inside the structure. .Let us deﬁ”eciating the proper transfer matrix to each self-similar section
the field generated by thigh layer of themth period on the (¢ regarding each periodic section as a concentrated mir-

right- hand side as ror). Also other optical harmonic generations can be treated
R () = YR+ R~ : in the undepleted pump approximation, and pump depletion
Ein(D = XinE @+ XnE (@), 2> Zm, could be taken into account with a numerical iteration
and on the left-hand side as schemg23]. We expect that this approach, which relies only
L s Lo on two-dimensional bases, can be implemented to give very
Em(D =X € @) + X0 (D, 2<Zjm. efficient numerical tools for the study of multilayer struc-
We can determin&?-* by imposing the boundary condi- tures and related phenomena.
tions
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