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The translation matrix formalism has been used to find an exact analytic solution for linear light propagation
in a finite one-dimensional periodic stratified structure. This modal approach allows us to derive a closed
formula for the electric field in every point of the structure, by simply imposing a convenient form for the
boundary conditions. We show how to apply this result to second-harmonic generation in the undepleted pump
regime.
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I. INTRODUCTION

It has been a very long time since multilayer periodic
structures have been proposed as distributed cavities for
many different purposes[1,2]. They enable the engineering
of field enhancement, group velocities, coherence lengths,
and so on. In the literature their treatment is usually per-
formed numerically, for example with the transfer-matrix ap-
proach[3–5] or by a Runge-Kutta numerical integration of
the Maxwell equations[6], and semianalytically through
convenient approximations, such as the coupled-mode theory
[7–9], the envelope-function approach[10–13], the Fourier
expansion of Bloch waves[14–16], or the recently proposed
quasinormal mode expansion[17].

In this paper, we will derive exact analytical expressions
both for the transmission and for the local field distribution
of finite periodic structures using the modal approach as pro-
posed by Russellet al. [14]. This approach greatly simplifies
the heavy numerical calculation needed in other schemes.
Physically a purely one-dimensional(1D) system represents,
in principle, a scalar problem with two degrees of freedom,
namely going from left to right and going from right to left.
We will show how, working always in the basis of the eigen-
modes, in each self-similar section, two complex numbers
completely determine an exact analytical solution for the
propagation. Self-similarity means translation invariance,
i.e., that the structure can be seen as a succession of replicas
of the same unit cell. A uniform medium clearly features a
continuous translational invariance(i.e., any point is equiva-
lent to any other point) and its eigenmodes are, of course, the
forward- and backward-propagating plane waves. On the
other hand, a periodic medium features a discrete translation
invariance(i.e., points a period apart are equivalent to each
other) and its eigenmodes are well known to be the progres-
sive and regressive Bloch waves.

By definition, these eigenmodes propagate unperturbed in
their proper medium, reducing the problem to a simple
analysis of the boundary conditions, coming from the world
of plane waves, passing through the world of Bloch waves to
couple back to the realm of plane waves.

The same approach can be easily extended to the nonlin-
ear regime whenever the linear propagation of the input
fields is not significantly affected by the nonlinear interac-
tions. As an example, we will study the case of SHG in the
undepleted pump regime.

II. BLOCH MODES

Let us consider a structure, the period of which is com-
posed of M different layers with refractive indexnj and
thickness dj s j =1, . . . ,Md. The stack period will beL
;o jdj (see Fig. 1). For simplicity, we will focus on the
purely 1D problem of propagation normal to the layer(any-
way it is straightforward to extend our analysis to oblique
incidence[14]).

It is a well-established result that, in a uniform medium,
the general solution for the scalar wave equation can be writ-
ten as a superposition of plane waves. Following Russell’s
translation matrix formalism[14], we can choose a particular
form for this linear combination and write the field in thej th
layer of themth period as a superposition of a sine and a
cosine centered in the middle of the layer,

Ej ,mszd = aj ,m cosfb jsz− zj ,mdg + bj ,m sinfb jsz− zj ,mdg/u j ,

s1d

whereaj ,m andbj ,m are complex constants,b j ;2pnj /l is the
propagation constant of a plane wave in the considered layer,
u j ;b jL, and
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FIG. 1. A periodic multilayer composed of three layers. On top
is explained the meaning of the indexesm, indicating the period,
and j , indicating the layer.
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zj ,m = mL + 1
2sdj − d1d + o

i=1

j−1

di

is the coordinate of the center of the same layer. This par-
ticular form has been carefully chosen for algebraic conve-
nience. The basishcosfb jsz−zj ,mdg ,sinfb jsz−zj ,mdg /u jj is spe-
cific for each single layer, is always real even for imaginary
b j, well behaved asb j

2 changes sign, and retains two degrees
of freedom even forb j =0 (actually these features are really
important only in the case of oblique incidence). Also propa-
gation within a stop band is specified by real values ofaj ,m
andbj ,m. In general, these constants entirely specify the field
in any chosen layer.

Introducing the vectorial representation of the field states
in the j th layer of themth period,

F j ,m ; Saj ,m

bj ,m
D ,

the translation matrices

M ki ; SAki Bki

Cki Dki
D ,

so thatFk,m=M kiFi,m, propagate the field from the layeri to
the adjacent layerk;modsi ,Md+1 [where “modsx,yd”
means the remainder on division ofx by y]. Their elements
are

Aki = ckci − sui/ukdsisk, Bki = cisk/uk + cksi/ui ,

Dki = cick − suk/uidsisk, Cki = − sukcisk + uicksid,

having definedcj ;cossb jdj /2d and sj ;sinsb jdj /2d. These
matrices are entirely real wheneveru j are real, which is true
in the case of normal incidence.

The matrix

M ; M 1M ¯ M 32M 21 ; SA B

C D
D ,

so thatF1,m+1=MF1,m, links the field of corresponding lay-
ers in adjacent periods.

By definition, the Bloch modes are the eigenmodes of a
periodic structure. Since the matrixM propagates the field
from the first layer of a given period to the first layer of the
next period, the vectorial representation of the Bloch mode
in the first layer of the first period will be given(up to an
overall phase) by the eigenstates ofM ,

F1
± ;

2

R
S 2B

D − A ± ÎsD − Ad2 + 4BC
D ; Sa1

±

b1
± D , s2d

where R;Î4B2+fD−A±ÎsD−Ad2+4BCg2/u1
2 is a conve-

nient normalization. We can then propagate the field from the
layer i to the adjacent layerk;modsi ,Md+1 to find the rep-
resentation of the Bloch mode in the other layers as

Fk
± ; M kiFi

± ; Sak
±

bk
± D .

They correspond to the eigenvalues

l± = 1
2fD + A ± ÎsD − Ad2 + 4BCg ; exps± iud ; exps± ibLd,

whereb;arccosf 1
2sD+Adg /L is the Bloch propagation con-

stant. So, up to an overall phase, the eigenstates in thej th
layer of themth period can be written as

F j ,m
± = exps± imudF j

± = exps± imudF j ,0
±

or, in terms of the field eigenmodes,

Ej ,m
± szd = exps± imudhaj

± cosfb jsz− zj ,mdg

+ bj
± sin fb jsz− zj ,mdg/u jj

= exps± imudEj ,0
± szd,

which reads that, for a Bloch mode, corresponding points of
different periods feature the same field, up to a factor due to
the Bloch propagation constant(that is, a phase factor in the
pass band and an amplitude factor in the band gap).

Let us now introduce the square waves

Sjszd ; pSdj − modSz +
d1

2
− o

i=1

j−1

di,LDD ,

where we have defined

psxd ; H1, x ù 0

0, x , 0
.

They are defined so thatSjszd is 1 in the regions with refrac-
tive indexnj and zero elsewhere.

Let us define also the “period number” function(“int” is
for integer part)

qszd ; int Sz+ d1/2

L
D

and the relative positions

d jszd ; z− fqszdL + zj ,0g = z− FqszdL + 1
2sdj − d1d + o

i=1

j−1

diG .

With these elements the Bloch modes can be rewritten in
closed form as

E±szd = o
j=1

M

SjszdEj
±szd, s3d

where

Ej
±szd ; expf± iuqszdghaj

± cosfb jd jszdg + bj
± sinfb jd jszdg/u jj.

It can also be convenient to represent the generic field Eq.(1)
as a superposition of local plane waves(i.e., the eigenmodes
of each single layer) through the vectors
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C j ,m ; Sgj ,m

hj ,m
D ;

1

2
S1 i/u j

1 − i/u j
DSaj ,m

bj ,m
D ; T jF j ,m, s4d

having rewritten

Ej ,mszd = gj ,m expf− ib jd jszdg + hj ,m expfib jd jszdg. s5d

This allows us to cast Eq.(3) in the standard Bloch form
E±szd;u±szdexps±ibzd by defining

u±szd ; o
j=1

M

Sjszduj
±szd,

where

uj
±szd ; exps7 ibzj ,0dhgj

± expf− isb j ± bdd jszdg

+ hj
± expfisb j ± bdd jszdgj,

with the obvious definition ofgj
±andhj

± throughC j
± ;T jF j

±.
From the definitions ofSjszd andd jszd, it is clear thatu±szd

areL-periodic functions.

III. BOUNDARY CONDITIONS

A. Perfectly periodic case

Consider now a finite structure ofN periods(Fig. 2) em-
bedded, both on the left and on the right, in the medium 1,
and excited on the left by a plane wave with wave vector
normal to the layers, unity amplitude, and null phase at
z=0.

Assuming that all materials are lossless, the layered struc-
ture will act as a mirror with a unitary scattering matrix,
reflecting a plane wave with an amplituder and a phasewr
and transmitting a plane wave with amplitudet and phasewt,
all to be determined.

In the case of nondegeneracy, the eigenmodes of the pe-
riodic structure represent a complete basis in every layer of
every period[notice that at the band-edge points, wheresD
−Ad2+4BC=0, the eigenmodes are degenerate and the
eigenstates can be a complete basis if and only ifB=C=0
and D=A]. So we can write the field in every point of the
periodic section as a linear combination,

Eszd = X+E+szd + X−E−szd, s6d

whereX± are the expansion coefficients, i.e., two complex
constants to be determined.

Since the Bloch waves can always be projected on the
complete basis of the eigenmodes of the single layer[Eq.
(5)], we can highlight the forward- and backward-
propagating plane-wave terms rewriting

Eszd ; o
j=1

M

SjszdhAj
fszdexpf− ib jd jszdg + Aj

bszdexpfib jd jszdgj,

where we have defined thez-dependent expansion coeffi-
cients

Aj
fszd = hX+gj

+ expfiuqszdg + X−gj
−

3expf− iuqszdgjexpf− ib jd jszdg,

Aj
bszd = hX+hj

+ expfiuqszdg + X−hj
−

3expf− iuqszdgj expfib jd jszdg. s7d

This allows us easily to impose the boundary conditions in
terms of the incoming and outgoing plane waves,

A1
f s0d = 1,

A1
bs0d = r expsiwrd ; rsNd,

A1
f sNLd = t expsiwtd ; tsNd,

A1
bsNLd = 0,

giving

X+ = V11
N exps− iNudh1

−,

X− = − V11
N expsiNudh1

+,

tsNd = V11
N sg1

+h1
− − g1

−h1
+d,

rsNd = − 2iV11
N sinsNudh1

+h1
−, s8d

having defined

V jk
N ; fhj

−gk
+ exps− iNud − hj

+gk
− expsiNudg−1. s9d

In Eq. (8), tsNd and rsNd are analytical expressions for the
transmission and reflection of anN-period multilayer(analo-
gous to those found in Ref.[2]), while X+ and X−, once
substituted in Eq.(6), give analytical expressions for the field
inside the multilayer. Notice that, at the band edges,V11

N

diverges and, whiletsNd and rsNd are well-behaved func-
tions,X+ andX− diverge.

To our knowledge, this is the first time that an exact ana-
lytical expression for the field in a finite multilayer structure
has been calculated explicitly. We believe this is due to two
main reasons. First, in the literature it is still possible to find
papers claiming that Bloch analysis can be applied to infinite
periodic structures only, even though exhaustive argumenta-
tion against this prejudice has been made for a long time
[18,19] (this is analogous to claiming that plane waves can
be used for infinite uniform media only). Second, usually the
Bloch expansion analysis of finite structures is made using a
global plane-wave expansion[14,15], that is, a Fourier ex-
pansion on harmonics of the reciprocal-lattice wave number,

FIG. 2. Incidence on anN-period structure. The light impinging
from the left is partially transmitted and partially reflected with
amplitude and phase given by the complex numberst andr.

EXACT ANALYTIC EXPRESSIONS FOR… PHYSICAL REVIEW E 69, 066602(2004)

066602-3



instead of alocal plane-wave expansion on the propagation
constant of each layer. But, in the same way that multiplying
N transfer matrices means forcing the local plane-wave
analysis at the global level(i.e., the transfer matrix is blind to
periodicity), using a global infinite(or, in practice, truncated)
plane-wave expansion means forcing the global periodicity
at the local level(i.e., the basis elements of a Fourier expan-
sion are blind to the period microstructure). We prefer in-
stead to use the Bloch modes at the global level and to
project them to local plane waves(i.e., local eigenmodes)
whenever a local calculation is needed, without any trunca-
tion of any basis.

For a comparison with the quasinormal modes approach,
we can find an analogy with the standard treatment of Fabry-
Perot cavities. A Fabry-Pérot cavity can be seen both as an
open cavity, i.e., a cavity with its proper “standing waves”
(the quasinormal modes[20]), or, on the other hand, as a
cascading of two mirrors that reflect progressive and regres-

sive traveling waves, i.e., the eigenmodes of the medium that
they surround. These two points of view apply also to peri-
odic structures: the first one by finding the proper quasinor-
mal modes[17], the second one by replacing the plane waves
with the Bloch waves, which is what we have done.

As a numerical example, we show in Fig. 3 the transmis-
sion spectrum of a 10-period bilayer structure and its com-
parison with a standard transfer-matrix approach. The com-
plete agreement is not a surprise, being they are both exact
methods, but we would like to point out that our analytic
approach is much more efficient because the calculation time
does not depend on the number of periods. We also show the
square modulus of the Bloch mode coefficientsX±: notice the
asymptotes corresponding to the singularities at the band
edges. In Fig. 4 are plotted the field amplitudes of both the
Bloch wave decomposition[Eq. (6)] and the local plane-
wave decomposition[Eq. (7)] calculated at the first transmis-
sion peak on the right-hand side of the second band(corre-

FIG. 3. (a) Transmission spec-
trum of a 10-period structuresd1

=700 nm, d2=350 nm, n1=1, n2

=3) and(b) its comparison with a
standard transfer-matrix approach
(crosses); (c) represents the square
modulus of the Bloch mode coef-
ficientsX±.
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sponding tol=1.5715mm). Notice the discrete invariance
of the Bloch mode amplitudes from period to period and the
continuous invariance of the plane-wave amplitude within
each single layer.

Two movies showing a comparison between the plane-
wave and the Bloch wave expansions are available on the
Web [21].

B. Fractional period case: Left to right

It is also useful to calculate the field when the structure
begins with the mediumj and finishes with the medium 1
(Fig. 5). Supposing to keep the same frame as in the previous
case and defining the period fractionxj ;L /zj ,0, if the in-
coming plane wave comes from the left-hand side, the
boundary conditions become

Aj
fszj ,0d = 1,

Aj
bszj ,0d ; rRsN − xjd,

A1
f sNLd ; tRsN − xjd,

FIG. 4. (a) Total electric-field
intensity, (b) field amplitudes of
the Bloch wave decomposition,
and (c) field amplitudes of the lo-
cal plane-wave decomposition, all
calculated at the first transmission
peak on the right-hand side of the
second band as in Fig. 3.

FIG. 5. Left to right incidence on ansN−xjd-period structure.
The first period is truncated and begins with thej th layer.
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A1
bsNLd = 0,

to give

X+ = V1j
N exps− iNudh1

−,

X− = − V1j
N expsiNudh1

+,

tRsN − xjd = V1j
N sg1

+h1
− − g1

−h1
+d,

rRsN − xjd = V1j
N fh1

−hj
+ exps− iNud − h1

+hj
− expsiNudg,

s10d

whereV1j
N is defined in Eq.(9).

C. Fractional period case: Right to left

When the structure begins with the medium 1 and finishes
with the mediumj and it is excited from the right-hand side
(Fig. 6), the boundary conditions become

Aj
fszj ,Nd ; rLsN − xjd,

Aj
bszj ,Nd = 1,

A1
f sNLd = 0,

A1
bsNLd ; tLsN − xjd,

to give

X+ = − V j1
Ng1

−, s11d

X− = V j1
Ng1

+,

tLsN − xjd = V j1
N sg1

+h1
− − g1

−h1
+d,

rLsN − xjd = V j1
N fg1

+gj
− exps− iNud − g1

−gj
+ expsiNudg,

whereV j1
N is defined in Eq.(9).

Notice the role exchange betweengj
± andhj

7 with respect
to Eq. (10).

IV. SECOND-HARMONIC GENERATION

Having an analytical expression for the field allows us
easily to solve nonlinear problems in a finite periodic struc-
ture without using heavy numerical approaches. As an ex-
ample, we will show how to calculate analytically the second
harmonic generated by anN-period multilayer in the unde-
pleted pump regime.

A. Nonlinear output

Suppose that to each layer of refractive indexnj there
corresponds a nonlinear second-order susceptibilityx j

s2d. The
field at frequencyv and propagation constantb j expressed
by Eq. (7) will generate in each layer a time-dependent ma-
terial polarization[22]

P̃jsz,td ~ x j
s2dfEjszdexpsivtd + c.c.g2.

We will keep only the two spatial terms which can signifi-
cantly contribute to SHG, i.e.,

Pj
fszd ~ x j

s2dfAj
fszdg2 expf− 2ib jd jszdg,

Pj
bszd ~ x j

s2dfAj
bszdg2 expf2ib jd jszdg.

So, at the right edge of the layer, the forward-propagating
field at frequency 2v and propagation constantkj, generated
starting from the left edge, will be[in each layer the period
number qszd;m and the field complex “amplitudes”
Aj

f,bszd;Aj ,m
f,b are constant]

Gj ,m
f ~ x j

s2dsAj ,m
f d2exps− ikjdj/2dsincfsb j − kj/2ddjgdj ,

s12d

while at the left edge of the layer, the backward-propagating
second-harmonic field generated starting from the right edge
will be

Gj ,m
b ~ x j

s2dsAj ,m
b d2 exps− ikjdj/2dsincfsb j − kj/2ddjgdj .

s13d

So, from the point of view of the 2v radiation, each layer
will be seen(see Fig. 7) as a cavity with two source terms at
its edges, delimited by two mirrors with reflectivityr j ,m

R,L and
transmissivityt j ,m

R,L. For the layerj , from Eq. (10) with all
quantities calculated at frequency 2v it will be

t j ,m
R = expsikjdj/2dtRsN − m− xjd,

r j ,m
R = expsikjdj/2drRsN − m− xjd,

t j ,m
L = expsikjdj/2dtLsm+ xjd,

FIG. 6. Right to left incidence on ansN−xjd-period structure.
The last period is truncated and finishes with thej th layer.

FIG. 7. Equivalent cavity for the light generated in a single
layer. The generation can be thought to be concentrated in the point
sourcesG and to build up the fieldsF inside and outside a cavity.
The concentrated mirrors are equivalent to the multilayers on the
left and on the right of the given layer.
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r j ,m
L = expsikjdj/2drLsm+ xjd,

where the phase factors account for propagation from the
edges to the center of the layer. So it is possible to easily
calculate the second-harmonic contributions coming from
the j th layer of the mth period by simply imposing the
boundary conditions for any given cavity,

Fj ,m
f s0d = r j ,m

L Fj ,m
b s0d,

Fj ,m
f sdjd = Fj ,m

f s0dexps− ikjdjd + Gj ,m
f ,

Fj ,m
b s0d = Fj ,m

b sdjdexps− ikjdjd + Gj ,m
b ,

Fj ,m
b sdjd = r j ,m

R Fj ,m
f sdjd,

Fj ,m
R = t j ,m

R Fj ,m
f sdjd,

Fj ,m
L = t j ,m

L Fj ,m
b s0d,

where (see Fig. 7) Fj ,m
f,b are the forward- and backward-

propagating fields inside the cavity, and, solving for the
fields Fj ,m

R,L out of the structure, we find

Fj ,m
R = t j ,m

R
r j ,m

L exps− ikjdjdGj ,m
b + Gj ,m

f

1 − r j ,m
L r j ,m

R exps− 2ikjdjd
,

Fj ,m
L = t j ,m

L
r j ,m

R exps− ikjdjdGj ,m
f + Gj ,m

b

1 − r j ,m
L r j ,m

R exps− 2ikjdjd
.

Finally, the total second-harmonic field outside the
multilayer will be simply given by the sum

FR,L ; o
j ,m

Fj ,m
R,L,

which is the desired result(where, for simplicity, we have
assumed also the thickness of the first and the last layer to be
d1).

B. Field distribution inside the structure

We can also derive an expression for the second
harmonic-field distribution inside the structure. Let us define
the field generated by thej th layer of themth period on the
right- hand side as

E j ,m
R szd = Xj ,m

R,+E+szd + Xj ,m
R,−E−szd, z. zj ,m,

and on the left-hand side as

E j ,m
L szd = Xj ,m

L,+E+szd + Xj ,m
L,−E−szd, z, zj ,m.

We can determineXj ,m
RL,± by imposing the boundary condi-

tions

E j ,m
R,fsNLd = Fj ,m

R , E j ,m
R,bsNLd = 0,

E j ,m
L,f s0d = 0, E j ,m

L,bs0d = Fj ,m
L ,

having defined

E j ,m
R,fszd ; Xj ,m

R,+g1
+ expfiuqszdg + Xj ,m

R,−g1
− expf− iuqszdg,

E j ,m
R,bszd ; Xj ,m

R,+h1
+ expfiuqszdg + Xj ,m

R,−h1
− expf− iuqszdg,

E j ,m
L,f szd ; Xj ,m

L,+g1
+ expfiuqszdg + Xj ,m

L,−g1
− expf− iuqszdg,

E j ,m
L,bszd ; Xj ,m

L,+h1
+ expfiuqszdg + Xj ,m

L,−h1
− expf− iuqszdg,

to give

Xj ,m
R,+ = V11

0 h1
− exps− iNudFj ,m

R ,

Xj ,m
R,− = − V11

0 h1
+ expsiNudFj ,m

R ,

Xj ,m
L,+ = − V11

0 g1
−Fj ,m

L ,

Xj ,m
L,− = V11

0 g1
+Fj ,m

L ,

whereV11
0 is defined in Eq.(9), always with all quantities

calculated at frequency 2v.
Since in theith layer of thenth period all theXj ,m

R,± will
contribute so thatm,n OR (m=n AND j ø i) as well as all the
Xj ,m

L,± so thatm.n OR (m=n AND j ù i), the overall Bloch
mode coefficients will depend on the position and will be

X±
i,n ; o

m,n
o

j

Xj ,m
R,± + o

jøi

Xj ,n
R,± + o

m.n
o

j

Xj ,m
L,± + o

jùi

Xj ,n
L,±

so that we can write the total second-harmonic field in the
layer as

Ei,nszd = X+
i,nE+szd + X−

i,nE−szd,

which is the desired result.

V. CONCLUSIONS

In the contest of the translation matrix formalism, we
have shown how to obtain analytic expression for the field in
finite 1D periodic structures. We apply this result to the case
of SHG, which can be treated analytically in the undepleted
pump regime. The same analysis can be extended to much
more complicated structures(e.g., featuring defects) by sim-
ply imposing the boundary conditions that apply or by asso-
ciating the proper transfer matrix to each self-similar section
(i.e., regarding each periodic section as a concentrated mir-
ror). Also other optical harmonic generations can be treated
in the undepleted pump approximation, and pump depletion
could be taken into account with a numerical iteration
scheme[23]. We expect that this approach, which relies only
on two-dimensional bases, can be implemented to give very
efficient numerical tools for the study of multilayer struc-
tures and related phenomena.

ACKNOWLEDGMENTS

I thank D. Faccio and M. Tormen for useful discussions
and for encouraging this work. I thank also M. Centini for
fruitful discussions about Bloch modes and quasinormal
mode expansion.

EXACT ANALYTIC EXPRESSIONS FOR… PHYSICAL REVIEW E 69, 066602(2004)

066602-7



[1] P. Yeh, A. Yariv, and C. Hong, J. Opt. Soc. Am.67, 438
(1977).

[2] P. Yeh,Optical Waves in Layered Media(Wiley, New York,
1988).

[3] M. A. Muriel and A. Carballar, IEEE Photonics Technol. Lett.
7, 955 (1997).

[4] D. S. Bethune, J. Opt. Soc. Am. B6, 910 (1989).
[5] S. Enoch and H. Akhouayri, J. Opt. Soc. Am. B15, 1030

(1998).
[6] M. Midrio, L. Socci, and M. Romagnoli, J. Opt. Soc. Am. B

19, 83 (2002).
[7] H. Kogelnik, Bell Syst. Tech. J.48, 2909(1969).
[8] M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am.71, 811

(1981).
[9] Z. Zylberberg and E. Marom, J. Opt. Soc. Am.73, 392(1983).

[10] C. M. de Sterke and J. E. Sipe, Phys. Rev. A38, 5149(1988).
[11] J. E. Sipe, I. Poladian, and C. Martijn de Sterke, J. Opt. Soc.

Am. A 11, 1307(1994).
[12] J. W. Haus, R. Viswanathan, M. Scalora, A. Kalocsai, J. D.

Cole, and J. Theimer, Phys. Rev. A57, 2120(1998).
[13] G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M. Berto-

lotti, M. J. Bloemer, and C. M. Bowden, J. Opt. Soc. Am. B
19, 2111(2002).

[14] P. St. J. Russell, T. A. Birks, and F. D. Lloyd-Lucas,Photonic

Bloch Waves and Photonic Band Gaps, in Confined Electrons
and Photons, edited by E. Burstein and C. Weisbuch(Plenum,
New York, 1995).

[15] P. St. J. Russell, Appl. Phys. B: Photophys. Laser Chem.39,
231 (1986).

[16] D. Faccio, F. Bragheri, and M. Cherchi, J. Opt. Soc. Am. B21,
296 (2004).

[17] A. Settimi, S. Severini, N. Mattiucci, C. Sibilia, M. Centini, G.
D’Aguanno, M. Bertolotti, M. Scalora, M. Bloemer, and C. M.
Bowden, Phys. Rev. E68, 026614(2003).

[18] P. St. J. Russell, J. Opt. Soc. Am. A1, 293 (1984).
[19] P. St. J. Russell, Opt. Commun.48, 71 (1983).
[20] P. T. Leung, S. Y. Liu, and K. Young, Phys. Rev. A49, 3057

(1994).
[21] See EPAPS Document No. E-PLEEE8-69-110405 for films

comparing the plane and Bloch wave expansions. A direct link
to this document fan be found in the online article’s HTML
section. This document may also be reached via the EPAPS
homepage(http://www.aip.org/pubservs/epaps.html) or from
ftp.aip.org in the directory /epaps/. See the EPAPS homepage
for more information.

[22] R. W. Boyd,Nonlinear Optics(Academic, San Diego, 1992).
[23] Y. Jeong and B. Lee, IEEE J. Quantum Electron.35, 162

(1999).

MATTEO CHERCHI PHYSICAL REVIEW E69, 066602(2004)

066602-8


